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Abstract
It was recently shown by Jimbo et al (2008 arXiv:0811.0439) that
the correlation functions of a generalized XXZ chain associated with an
inhomogeneous six-vertex model with a disorder parameter α and with arbitrary
inhomogeneities on the horizontal lines factorize and can all be expressed in
terms of only two functions ρ and ω. Here we approach the description of the
same correlation functions and, in particular, of the function ω from a different
direction. We start from a novel multiple integral representation for the density
matrix of a finite chain segment of length m in the presence of a disorder field
α. We explicitly factorize the integrals for m = 2. Based on this, we present
an alternative description of the function ω in terms of the solutions of certain
linear and nonlinear integral equations. We then prove directly that the two
definitions of ω describe the same function. The definition in the work of Jimbo
et al (2008 arXiv:0811.0439) was crucial for the proof of the factorization.
The definition given here together with the known description of ρ in terms of
the solutions of nonlinear integral equations is useful for performing, e.g., the
Trotter limit in the finite temperature case, or for obtaining numerical results
for the correlation functions at short distances. We also address the issue of the
construction of an exponential form of the density matrix for finite α.

PACS numbers: 05.30.−d, 75.10.Pq

1. Introduction

In recent years, significant progress has been achieved in the understanding of the mathematical
structure of the correlation functions of the XXZ model and related integrable models. First
of all the ground state correlation functions were studied. They are completely defined
through the quantum-mechanical density matrix. An explicit expression for the density matrix
of a finite subchain of the infinite XXZ chain in the massive regime was first obtained by
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Jimbo et al [17]. They expressed the elements of the density matrix in terms of multiple
integrals. Subsequently, extensions of their formulae to the massless regime and to a non-
vanishing longitudinal magnetic field were obtained in [18, 22].

Then it was realized that the multiple integrals can be factorized [10] and that, utilizing the
so-called reduced Knizhnik–Zamolodchikov equation, the factorized integrals can be written
in a compact exponential form [6, 7]. The latter allows one to distinguish between an algebraic
part and a physical part. The physical part is defined by a small number of transcendental
functions, fixed by the one-point correlators and by the two-point neighbour correlators which
depend on the physical parameters such as anisotropy, temperature, length of the chain,
magnetic field, boundary conditions, etc. The algebraic part is related to the representation
theory of the symmetry algebra behind the model, namely the quantum group Uq(ŝl2) in the
case of the XXZ chain.

In [8], it was observed that the formula for the correlation functions looks nicer if the
XXZ chain is regularized by introducing an additional parameter, the disorder field α. With
this new parameter it was possible to express the density matrix in terms of special fermionic
annihilation operators b and c acting not on states of the spin chain, but on the space of
(quasi-)local operators on these states. The annihilation operators appeared to be responsible
for the algebraic part. The physical part was represented by a transcendental function ω

determined by a single integral. In [9], the dual fermionic creation operators b∗, c∗ and a
bosonic creation operator t∗ were constructed. These operators together generate a special
basis of the space of quasi-local operators. Since b∗ and c∗ are Fermi operators, Wick’s
theorem applies and expectation values of products of b∗, c∗ and t∗ in an appropriately defined
vacuum state can be written as determinants, very much as in the case of free fermions.

Thermodynamic properties of integrable lattice models can be studied within the Suzuki–
Trotter formalism by considering an auxiliary lattice with staggering in the so-called Trotter
direction [24]. The temperature appears as a result of a special limit when the extension of
the lattice in the Trotter direction becomes infinite. Physical quantities are expressed in an
efficient way through the solution to certain nonlinear integral equations [23]. A detailed
discussion of this issue and further references can, for instance, be found in the book [12].

In papers [14, 15], the Suzuki–Trotter formalism was used in order to generalize the
multiple integrals to finite temperature. Then their factorization was probed for several
examples of correlation functions, first for the XXX chain [3] and later for the XXZ chain
[2, 4]. Also a conjecture was formulated stating that the above-mentioned exponential form is
valid with the same fermionic operators (at least as long as they act on spin reversal invariant
products of local operators) as for the ground state and two functions ω, ω′ obtained from an
α-dependent function in the limit α → 0.

Unfortunately, the formulae of [2, 4] worked only in this limit. The generalization to
generic α stayed obscure. One of the purposes of the present work is to add to the clarification
of this point, starting from a proper multiple integral representation with a disorder parameter
α. Here, as we had to learn [20], the crucial point is that the ‘Cauchy extraction trick’,
invented in [16] and described in more detail in [21], can be applied in the finite temperature
case and also in the more general situation of a finite lattice with inhomogeneities in the Trotter
direction.

Important new insight came from a recent paper [19] by Jimbo et al, where they suggested
a purely algebraic approach to the problem of calculating the static correlation functions of
the XXZ model. The key idea of [19] is to evaluate a linear functional related to the partition
function within the fermionic basis constructed in [9]. The authors of [19] work with a finite
lattice, inhomogeneous in the Trotter direction. In this situation, they suggest a new and
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surprising construction of the function ω depending on a magnetic field and on the disorder
parameter α.

In the present paper, we discuss the relation of the work by Jimbo et al to the approach using
nonlinear integral equations which at the moment seems more appropriate, e.g., for taking the
Trotter limit (which was omitted in [19]). In particular, we present an alternative description
of the function ω starting from the multiple integral and using the explicit factorization
of the density matrix for two neighbouring lattice sites. We then give a direct proof that
our expression, though looking rather different than that in [19], in fact describes the same
function.

An inhomogeneous lattice in the Trotter direction is very general and leaves many different
options for the realization of physical correlation functions. Here we shall concentrate on two
of them, the correlation functions of the infinite XXZ chain at finite temperature and magnetic
field (temperature case), and the ground state correlation functions of a finite chain with twisted
periodic boundary conditions (finite length case). Both cases can be treated to a very large
extend simultaneously. They are only distinct in that a different distribution of inhomogeneity
parameters is required, and in that for the finite temperature case the Trotter limit has to
be performed. Note that instead of the XXZ Hamiltonian we could consider combinations
of conserved quantities obtained from the transfer matrix of the six-vertex model within the
formalism of nonlinear integral equations. For the bulk thermodynamic properties, this issue
was recently studied in [25].

The paper is organized as follows. In the following section, we define our basic objects
and recall some of their properties. In section 3, we show the multiple integral formula for
the elements of the (α-twisted) density matrix for a subchain of length m. In section 4, we
consider the simplest case, m = 1. Section 5 is devoted to applying the factorization technique
to the double integrals for m = 2. In section 6 we introduce the function ω. We discuss its
properties and the relation to its realization by Jimbo et al. The content of section 7 is some
preliminary work on the construction of an operator t, dual to the creation operator t∗, which
should appear in the construction of an exponential form for finite temperature and a finite
disorder parameter. In appendices, we provide a derivation of the multiple integral formulae,
we discuss the limit α → 0, and we compare with the results of the papers [2, 4].

2. Density matrix and correlation functions

The XXZ quantum spin chain is defined by the Hamiltonian,

HN(κ) = J

N∑
j=1

(
σx

j−1σ
x
j + σ

y

j−1σ
y

j + �
(
σ z

j−1σ
z
j − 1

))
, (1)

written here in terms of the Pauli matrices, σx = e+
− + e−

+ , σ y = i
(
e+
− − e−

+

)
, σ z = e+

+ − e−
−

(where the eα
β are the elements of the gl(2) standard basis). The two real parameters J and

� control the ground-state phase diagram of the model. For simplicity of notation, we shall
restrict ourselves in the following to the critical phase J > 0, |�| < 1. Note, however, that the
results of this work can easily be extended to the off-critical antiferromagnetic phase � > 1.
We shall also assume without further mentioning that the number of lattice sites N is even.

To fully specify HN(κ) we have to define the boundary conditions. We shall consider
twisted periodic boundary conditions, when we are dealing with the ground state of the finite
chain. Then HN(κ) depends on an additional parameter κ through(

e0
+
+ e0

+
−

e0
−
+ e0

−
−

)
= q−κσ z

(
eN

+
+ eN

+
−

eN
−
+ eN

−
−

)
qκσz

. (2)
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Here q is related to � as � = (q + q−1)/2. For the finite temperature case we shall assume
periodic boundary conditions for the Hamiltonian. Nevertheless, the same parameter κ will
appear in that case as a twist parameter of the quantum transfer matrix, having then a rather
different physical meaning as an external magnetic field coupling to the spins by a Zeeman
term. We shall elaborate on this below.

The integrable structure behind the Hamiltonian (1) is generated by the trigonometric
R-matrix of the six-vertex model [1]:

R(λ) =

⎛⎜⎜⎝
1 0 0 0
0 b(λ) c(λ) 0
0 c(λ) b(λ) 0
0 0 0 1

⎞⎟⎟⎠ , (3)

b(λ) = sh(λ)

sh(λ + η)
, c(λ) = sh(η)

sh(λ + η)
, (4)

acting on C
2 ⊗C

2. As presented here it satisfies the Yang–Baxter equation in an additive form.
To facilitate the comparison with [9, 19], where the multiplicative form was preferred, we set
q = eη and ζ = eλ. Then for arbitrary complex inhomogeneity parameters βj , j = 1, . . . , N ,
the definition,

Ta(ζ ) = Ra,N(λ − βN) . . . Ra,1(λ − β1), (5)

of the monodromy matrix makes sense, where, as usual, the indices 1, . . . , N refer to the spin
chain, while a refers to an additional site defining the so-called auxiliary space. We also set
Ta(ζ, κ) = Ta(ζ )qκσ z

a and introduce the twisted transfer matrix:

t (ζ, κ) = tra(Ta(ζ, κ)). (6)

In [19], a six vertex-model with N horizontal rows and an arbitrary distribution of the
inhomogeneities, τj = eβj , on these rows was considered. Here we would like to point out
that two specific distributions are of particular interest in physical applications. Moreover, in
both cases the special functions that enter the representations of the transfer matrix eigenvalues
and correlation functions have nice descriptions in terms of solutions of linear and nonlinear
integral equations.

The first case relates to the ground state of the Hamiltonian (1). We call it the finite length
case. In this case, we choose

βj = η/2, j = 1, . . . , N. (7)

Then

HN(κ) = 2J sh(η)∂λ ln(t−1(q
1
2 , κ)t (ζ, κ))|λ=η/2, (8)

with twisted boundary conditions (2) if we identify � = ch(η). The critical regime, |�| < 1,
corresponds to purely imaginary η = iγ, γ ∈ [0, π). In this case, the physical twist angle or
flux, � ∈ [0, 2π), is � = −κγ , whence κ should be real. If we stick to the vertex model
picture of [19], then t (ζ, κ) is the vertical or column-to-column transfer matrix in this case.

The second case is determined by an alternating choice,

βj =
{

β2j−1 = η − β

N

β2j = β

N

, j = 1, . . . , N/2, (9)

of inhomogeneity parameters. This case will be called the finite temperature case as it relates
to the quantum transfer matrix, whose monodromy matrix is

T QTM
a (ζ ) = Ra,N(λ − β/N)R

t1
N−1,a(−β/N − λ) . . . Ra,2(λ − β/N)R

t1
1,a(−β/N − λ). (10)
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Here the superscript ‘t1’ indicates transposition with respect to the first space. In fact, setting
Y =∏N/2

j=1 σ
y

2j−1 and using the crossing symmetry,

σ
y

j Ra,j (λ − η)σ
y

j = b(λ − η)R
t1
j,a(−λ), (11)

of the R-matrix, we find that

T QTM
a (ζ ) = YTa(ζ )Y

N/2∏
j=1

1

b(λ − β2j−1)
. (12)

The quantum transfer matrix is by definition

tQTM(ζ, κ) = tra
(
T QTM

a (ζ, κ)
)
, (13)

where T QTM
a (ζ, κ) = T QTM

a (ζ )qκσ z
a .

Again, within the vertex model picture, tQTM(ζ, κ), or t (ζ, κ) with the choice (9) of the
inhomogeneity parameter, corresponds to the vertical transfer matrix. There is an important
difference, though, that has been explained at several occasions [14, 23]. In the finite length
case, the Hamiltonian can be derived from the vertical transfer matrix. In particular, the vertical
transfer matrix and the Hamiltonian (1) have the same eigenstates. In the finite temperature
case, on the other hand, with a lattice which is homogeneous in the horizontal direction, say,
the Hamiltonian is related to the horizontal transfer matrix with purely periodic boundary
conditions. It is then also periodic and will be denoted HL(0), where L is the horizontal
extension of the lattice. In this case, the vertical transfer matrix eigenstates are different from
those of the Hamiltonian. In particular, the eigenstate with the largest modulus determines
the state of thermodynamic equilibrium in the thermodynamic limit, i.e. the free energy of
the XXZ chain and all its static correlation functions [14]. Also the physical interpretation
of the parameter κ is rather different in this case. It corresponds to a magnetic field coupling
to the spin chain through a Zeeman term (see, e.g., [14]).

Using a lattice of finite extension L in the horizontal direction, we can express the partition
function of the homogeneous XXZ chain of length L as

ZL = tr1,...,L e−βHL(0)+hS[1,L]/T = lim
N→∞

tr1,...,N (tQTM(1, h/(2ηT )))L. (14)

Here T is the temperature, and h is a longitudinal magnetic field. β must be chosen as
β = 2J sh(η)/T . Furthermore,

S[1,L] = 1

2

L∑
j=1

σ z
j (15)

is the conserved z-component of the total spin. Equation (14) becomes efficient in the
thermodynamic limit, L → ∞, since then a single eigenvalue �QTM(1, κ) of tQTM(1, κ) of
largest modulus dominates the large-L asymptotics of ZL in the Trotter limit N → ∞. We
shall refer to this eigenvalue as the dominant one.

We would like to remark that in our understanding the quantum transfer matrix is, in
general, more appropriate for studying integrable spin models on the infinite lattice than the
usual transfer matrix. In general, there is no crossing symmetry, and the quantum transfer
matrix and the usual transfer matrix are not related by a similarity transformation like in
(12). Also within the quantum transfer matrix formulation the density matrix directly takes
its ‘natural form’ in terms of monodromy matrix elements (see below). No solution of a
quantum inverse problem as in [22] is required. In our particular case, we do have the crossing
symmetry, and the quantum transfer matrix and the usual transfer matrix with staggered
inhomogeneities (9) give an equivalent description of the density matrix (see below). Still,
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the largest eigenvalue of t (ζ, κ) with the distribution (9) of inhomogeneities diverges in the
Trotter limit as can be seen from (12).

Let us come back to the situation of arbitrarily distributed inhomogeneity parameters βj .
Following [19], we shall assume that for a certain spectral parameter ζ0 and any κ ∈ C the
transfer matrix t (ζ0, κ) has a unique eigenvector |κ〉 with an eigenvalue �(ζ0, κ) of largest
modulus. This is certainly true for the two special cases considered above. In the finite
length case, ζ0 = q1/2, while ζ0 = 1 in the finite temperature case. We fix a set of ‘vertical
inhomogeneity parameters’ ν1, . . . , νm and set ξj = eνj . Then we can define the object of our
main interest, the density matrix with matrix elements

DN
ε′

1...ε
′
m

ε1...εm
(ξ1, . . . , ξm|κ, α) = 〈κ + α|T ε′

1
ε1 (ξ1, κ) . . . T

ε′
m

εm
(ξm, κ)|κ〉

〈κ + α|∏m
j=1 t (ξj , κ)|κ〉 , (16)

which is, in fact, an inhomogeneous and ‘α-twisted’ version of the usual density matrix.
In the finite length case (7) with the twist angle �, the expectation value in the ground

state |�〉 of any operator X[1,m] acting non-trivially only on the first m lattice sites is [11]

〈�|X[1,m]|�〉
〈�|�〉 = lim

α→0
lim

νj →η/2
tr1,...,m{DN(ξ1, . . . , ξm| − �/γ, α)X[1,m]}. (17)

In the finite temperature case (9), we use that the right-hand side of (16) stays form invariant
under the transformation (12) which replaces all objects relating to the ordinary transfer matrix
with the corresponding objects relating to the quantum transfer matrix. Hence, from [15],

〈X[1,m]〉T ,h = lim
L→∞

tr1,...,L{e−βHL(0)+hS[1,L]/T X[1,m]}
ZL

= lim
α→0

lim
νj →0

lim
N→∞

tr1,...,m{DN(ξ1, . . . , ξm|h/(2ηT ), α)X[1,m]}. (18)

The density matrix (16) allows for reduction from the left and from the right expressed by

tr1{DN(ξ1, . . . , ξm|κ, α)qασz
1 } = ρ(ξ1)DN(ξ2, . . . , ξm|κ, α), (19a)

trm{DN(ξ1, . . . , ξm|κ, α)} = DN(ξ1, . . . , ξm−1|κ, α), (19b)

where

ρ(ζ ) = �(ζ, κ + α)

�(ζ, κ)
. (20)

The function ρ plays an important role in [19]. As we shall see below it is also important for
the formulation of a multiple integral formula for the density matrix and is the only non-trivial
one-point function for finite α. In the temperature case, with κ = h/(2ηT ), we have

ρ(1) = 1 + m(T , h)2ηα + O(α2), (21)

where m(T , h) is the magnetization.
In the temperature case as well as in the finite length case and in certain inhomogeneous

generalizations of both cases, the function ρ can be expressed in terms of an integral over
certain auxiliary functions (see, e.g., [11, 14]):

ρ(ζ ) = qα exp

{∫
C

dμ

2π i
e(μ − λ) ln

[
1 + a(μ, κ + α)

1 + a(μ, κ)

]}
. (22)

Here e(λ) is the ‘bare energy’:

e(λ) = cth(λ) − cth(λ + η), (23)
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λ

Re

η
2

η
2

Im

C

C

Figure 1. The canonical contour C surrounds the real axis in a counterclockwise manner inside
the strip − γ

2 < Imλ <
γ
2 .

and a(λ, κ) is the solution of a nonlinear integral equation with integration kernel

K(λ) = cth(λ − η) − cth(λ + η). (24)

In the finite length case, this equation reads

ln(a(λ, κ)) = (N − 2κ)η +
N∑

j=1

ln

[
sh(λ − βj )

sh(λ − βj + η)

]
−
∫
C

dμ

2π i
K(λ − μ) ln(1 + a(μ, κ)).

(25)

Equations (22) and (25) are still valid if βj are not precisely those of equation (7), but are
close to η/2 with Imβj = γ /2. The contour of integration to be used in (22) and (25) is shown
in figure 1. In the temperature case, the nonlinear integral equation has a similar structure,
but the driving term is different. Suppose that for j = 1, . . . , N/2 the β2j−1 are close to η,
whereas the β2j are close to 0. Then

ln(a(λ, κ)) = −2κη +
N/2∑
j=1

ln

[
sh(λ − β2j )sh(λ − β2j−1 + 2η)

sh(λ − βj + η)sh(λ − β2j−1 + η)

]
−
∫
C

dμ

2π i
K(λ − μ) ln(1 + a(μ, κ)). (26)

We presented both equations (25) and (26) in an inhomogeneous form, since we shall
need this later, when comparing with [19]. Note, however, that the homogeneous limit is
trivial in both cases and that, moreover, the Trotter limit can be performed in (26). Then

ln(a(λ, κ)) = (N − 2κ)η + N ln

[
sh(λ − η/2)

sh(λ + η/2)

]
−
∫
C

dμ

2π i
K(λ − μ) ln(1 + a(μ, κ)) (27)

in the finite length case, and

ln(a(λ, κ)) = −2κη − 2J sh(η) e(λ)

T
−
∫
C

dμ

2π i
K(λ − μ) ln(1 + a(μ, κ)) (28)

in the temperature case and in the Trotter limit. Equations (27) and (28) are what we call the
a-form of the nonlinear integral equation. There is another so-called bb-form [11, 23] which
is more convenient for an accurate calculation of the numerical values of the functions.

7
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3. The multiple integral representation of the density matrix

In appendix A, we derive the following multiple integral representation for the elements of the
density matrix:

DN
ε′

1...ε
′
m

ε1...εm
(ξ1, . . . , ξm|κ, α) =

⎡⎣ p∏
j=1

∫
C

dm(λj ) F +
�j

(λj )

⎤⎦⎡⎣ m∏
j=p+1

∫
C

dm(λj ) F−
�j

(λj )

⎤⎦
× detj,k=1,...,m[−G(λj , νk)]∏

1�j<k�m sh(λj − λk − η)sh(νk − νj )
, (29)

where we have used the notation

dm(λ) = dλ

2π iρ(ζ )(1 + a(λ, κ))
, dm(λ) = a(λ, κ) dm(λ),

(30)

F±
�j

(λ) =
�j −1∏
k=1

sh(λ − νk)

m∏
k=�j +1

sh(λ − νk ∓ η), �j =
{

ε+
j j = 1, . . . , p

ε−
m−j+1 j = p + 1, . . . , m

with ε+
j being the j th plus in the sequence, (εj )

m
j=1, ε

−
j the j th minus sign in the sequence

(ε′
j )

m
j=1 and p the number of plus signs in (εj )

m
j=1. The function G is new here. It is defined

as the solution of the linear integral equation:

G(λ, ν) = q−αcth(λ − ν − η) − ρ(ξ)cth(λ − ν) +
∫
C

dm(μ)Kα(λ − μ)G(μ, ν), (31)

where ξ = eν , and the kernel,

Kα(λ) = q−αcth(λ − η) − qαcth(λ + η), (32)

is a deformed version of (24).
Equation (29) is a generalization to finite α of the multiple integral formulae first derived

in [11, 15]. To simplify the notation, we shall sometimes suppress the dependence of the
density matrix elements on κ and α.

4. The case m = 1

For m = 1 there are only two non-vanishing density matrix elements. They are related to the
function ρ by the reduction relations (19) which imply that(

D+
+(ξ)

D−
−(ξ)

)
= 1

qα − q−α

(−q−α 1
qα −1

)(
1

ρ(ξ)

)
. (33)

When we insert equation (29) for m = 1 here, we do not obtain an independent equation, but
rather an interesting identity for ρ (recall that ρ appears in the measure):

ρ(ξ) = q−α − (qα − q−α)

∫
C

dm(μ)G(μ, ν). (34)

It allows us to calculate the asymptotic behaviour of the function G:

lim
Reλ→±∞

G(λ, ν) = 0. (35)

8
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Table 1. The coefficients of the polynomial p.

ε′
1 ε′

2
ε1 ε2 c0 c1 c2 c3

+ −
+ − 1 −ξ2

1 −q2ξ2
2 q2ξ2

1 ξ2
2

− +
− +

q2 −ξ2
2 −q2ξ2

1 ξ2
1 ξ2

2

+ −
− +

qξ2/ξ1 −qξ1ξ2 −qξ1ξ2 qξ3
1 ξ2

− +
+ − qξ1/ξ2 −q−1ξ1ξ2 −q3ξ1ξ2 qξ1ξ

3
2

5. Factorization of the density matrix for m = 2

The factorization of the multiple integrals for the ground-state density matrix was discovered
in [10]. In that case, the integrand consists of explicit functions whose analytic properties
were used in the calculation. In the finite temperature case, a different factorization technique
had to be invented. As was demonstrated in [3], the linear integral equation for the function G,
appropriately used under the multiple integral, can be viewed as the source of the factorization,
at least for the special case of the isotropic chain at α = 0. For the XXZ chain outside the
isotropic point and without the disorder parameter α, however, that trick does not work
anymore. Here we shall see that a finite α allows us to perform the factorization of the density
matrix in much the same way as in [3].

Let us consider m = 2 in (29). There are six non-vanishing matrix elements in this
case, one for p = 0, four for p = 1 and one for p = 2. We shall concentrate on the case
p = 1, since the matrix elements for p = 0 or 2 can be obtained from those for p = 1 by
means of the reduction relation (19). After substituting wj = e2μj and ξj = eνj , j = 1, 2, the
corresponding integrals are all of the form

I = 1

ξ 2
2 − ξ 2

1

∫
C

dm(μ1)

∫
C

dm(μ2) det[G(μj , νk)]r(w1, w2), (36)

where

r(w1, w2) = p(w1, w2)

w1 − q2w2
, p(w1, w2) = c0w1w2 + c1w1 + c2w2 + c3. (37)

The coefficients cj are different for the four different matrix elements. They are listed in
table 1.

Inserting

dm(μ) = dλ

2π iρ(eμ)
− dm(μ) (38)

into (36) and taking into account that ρ(eμ) is analytic and nonzero inside C, we obtain

I(ξ 2
2 − ξ 2

1 ) = −
∫
C

dm(μ) det

(
G(μ, ν1) G(μ, ν2)

r
(
w, ξ 2

1

)
r
(
w, ξ 2

2

))

−
∫
C

dm(μ1)

∫
C

dm(μ2) det[G(μj , νk)]r(w1, w2), (39)

where w = e2μ. Here the first integral is already factorized. Under the second integral
the integration measures now appear symmetrically. Hence, we may replace r(w1, w2) by
(r(w1, w2) − r(w2, w1))/2.

9
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Following [3], we want to use the integral equation (31) under the second integral in (39).
This is possible if rational functions F(w1, w2) and g(w) exist, such that

r(w1, w2) − r(w2, w1) = F(w1, w2) + g(w1)Kα(μ1 − μ2) − g(w2)Kα(μ2 − μ1), (40)

and the antisymmetric function F(w1, w2) is a sum of factorized functions in w1 and w2.
Then F considered as a function of w1 cannot have poles whose position depends on w2. In
particular, the residue at w1 = q2w2 must vanish. Using this in (40) with the explicit forms of
r and Kα inserted we obtain a difference equation for g:

g(q2w)y−1 − g(w)y = p(q2w,w)

2q2w
. (41)

Here y = qα . Clearly this equation has a solution of the form

g(w) = g+w + g0 +
g−
w

. (42)

The coefficients are easily obtained by substituting the latter expression into (41):

g+ = c0y

2(q2 − y2)
, g− = c3y

2(1 − q2y2)
, g0 = (c1 + q−2c2)y

2(1 − y2)
. (43)

Substituting g back into (40) we obtain F(w1, w2) = f (w1) − f (w2), where

f (w) = (y − y−1)
(
g+w − g−

w

)
. (44)

Consequentially,

r(w1, w2) = f (w1) + g(w1)Kα(μ1 − μ2) + symmetric function. (45)

With this we can factorize the second integral in (39) by means of the integral equation
(31):∫
C

dm(μ1)

∫
C

dm(μ2) det[G(μj , νk)]r(w1, w2)

= (y − y−1) det

(
g+ϕ+(ν1) − g−ϕ−(ν1) g+ϕ+(ν2) − g−ϕ−(ν2)

ϕ0(ν1) ϕ0(ν2)

)
+
∫
C

dm(μ) det

(
G(μ, ν1) G(μ, ν2)

g(w)H(μ, ν1; y−1) g(w)H(μ, ν2; y−1)

)
, (46)

where

ϕj (ν) =
∫
C

dm(μ)wjG(μ, ν), j = +, 0,−, (47a)

H(μ, ν; y−1) = ρ(ξ)cth(μ − ν) − y−1cth(μ − ν − η). (47b)

Finally, we substitute (46) into (39) and further simplify the resulting expression using the
identities

g(w)H(μ, ν; y−1) = g(ξ 2)H(μ, ν; y) − p(q2ξ 2, ξ 2)

2q2ξ 2
cth(μ − ν − η)

−ϕ0(ν)(f (w) − f (ξ 2)) +
y−1

y − y−1
(f (ξ 2) − f (q2ξ 2)), (48a)

r(w, ξ 2) = p(q2ξ 2, ξ 2)

2q2ξ 2
cth(μ − ν − η) − p(−q2ξ 2, ξ 2)

2q2ξ 2
. (48b)

10
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Then

I = g
(
ξ 2

2

)
�(ξ2, ξ1) − g

(
ξ 2

1

)
�(ξ1, ξ2)

ξ 2
2 − ξ 2

1

+
(c1 − q−2c2)(ρ(ξ1) − ρ(ξ2))

2
(
ξ 2

2 − ξ 2
1

)
(y − y−1)

+
(y−1 − ρ(ξ1))(y − ρ(ξ2))f

(
ξ 2

2

)− (y−1 − ρ(ξ2))(y − ρ(ξ1))f
(
ξ 2

1

)(
ξ 2

2 − ξ 2
1

)
(y − y−1)2

, (49)

where

�(ξ1, ξ2) =
∫
C

dm(μ)G(μ, ν2)(q
αcth(μ − ν1 − η) − ρ(ξ1)cth(μ − ν1)). (50)

Equation (49) determines the four density matrix elements for p = 1 in a factorized form.
Note that the matrix elements depend on only two transcendental functions ρ and �. The
remaining two non-zero density matrix elements for m = 2 follow from (49) by means of the
reduction relations (19),

D++
++(ξ1, ξ2) = ρ(ξ1) − y−1

y − y−1
− D+−

+−(ξ1, ξ2), (51a)

D−−
−−(ξ1, ξ2) = y − ρ(ξ1)

y − y−1
− D−+

−+(ξ1, ξ2). (51b)

We shall give a fully explicit matrix representation of the factorized density matrix for m = 2
below, after we have introduced the function ω.

6. The function ω

In the recent work [19], it was shown that the correlation functions defined by the
inhomogeneous and α-twisted density matrix (16) factorize and can all be expressed in
terms of only two transcendental functions, the function ρ entering the reduction relations
(19) and another function ω which in [19] was defined as the expectation value of a product
of two creation operators and was represented by a determinant formula. The approach of
[19] is slightly different from ours here in that the lattice used in [19] is homogeneous in the
‘horizontal direction’ (all the ξs in (16) are taken to be 1 from the outset). For the ground state
both cases lead to the same function ω (see sections 5.3 and 5.4 of [9]). In particular, in the
inhomogeneous case, following sections 5.1 and 5.3 of [9], we have1

ω(ξ1, ξ2) = −〈c∗
[1,2](ξ2, α)b∗

[1,2](ξ1, α − 1)(1)〉. (52)

Replacing the vacuum expectation value by the expectation value calculated with the
density matrix (16) we take (52) as our definition of the function ω. In our case, ω depends
on two twist parameters κ and α. We indicate this by writing ω(ξ1, ξ2|κ, α). The construction
of the operators b∗

[1,2] and c∗
[1,2] is explained in [9]. For the product needed in (52) we find the

explicit expression:

ξ−αc∗
[1,2](ξ2, α)b∗

[1,2](ξ1, α − 1)(1)

=
(

qα−1ξ−1

qξ − q−1ξ−1
− q1−αξ−1

q−1ξ − qξ−1
+

qα − q−α

2

)
σ z ⊗ σ z

+
qα − q−α

2

(
q−1ξ−1

qξ − q−1ξ−1
− qξ−1

q−1ξ − qξ−1

)
(I2 ⊗ σ z − σ z ⊗ I2)

1 More precisely this function was denoted (ω0 − ω)(ξ1/ξ2, α) in [9].
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+ 2

(
qα

qξ − q−1ξ−1
− q−α

q−1ξ − qξ−1

)
(σ + ⊗ σ− + σ− ⊗ σ +)

+ (qα − q−α)

(
1

qξ − q−1ξ−1
+

1

q−1ξ − qξ−1

)
(σ + ⊗ σ− − σ− ⊗ σ +), (53)

where ξ = ξ1/ξ2. Inserting this into (52) and calculating the average with the factorized
two-site density matrix of the previous section, we obtain

ω(ξ1, ξ2|κ, α) = 2ξα�(ξ1, ξ2) − �ψ(ξ) + 2(ρ(ξ1) − ρ(ξ2))ψ(ξ). (54)

Here we adopted the notation from [9],

ψ(ξ) = ξα(ξ 2 + 1)

2(ξ 2 − 1)
, (55)

and � is the difference operator whose action on a function f is defined by �f (ξ) =
f (qξ) − f (q−1ξ).

The remaining part of this section is devoted to the exploration of the properties of ω.
First of all we substitute ω back into the equation for the two-site density matrix, which can
then be expressed entirely in terms of ω and a function,

ϕ(ζ |κ, α) = ch(αη) − ρ(ζ )

sh(αη)
, (56)

which is sometimes more convenient than the function ρ itself. We obtain

DN(ξ1, ξ2|κ, α) = 1

4
I2 ⊗ I2 − 1

4(qα−1 − q1−α)

(
ξ 1−αω12 − ξα−1ω21

ξ − ξ−1
+

ϕ1ϕ2(q
α − q−α)

2

)
×
(

q − q−1

2
I2 ⊗ σ z − q + q−1

2
σ z ⊗ σ z + ξ−1σ + ⊗ σ− + ξσ− ⊗ σ +

)
− 1

4(qα+1 − q−α−1)

(
ξ−α−1ω12 − ξα+1ω21

ξ − ξ−1
+

ϕ1ϕ2(q
α − q−α)

2

)
×
(

−q − q−1

2
I2 ⊗ σ z − q + q−1

2
σ z ⊗ σ z + ξσ + ⊗ σ− + ξ−1σ− ⊗ σ +

)
− ξ−αω12 − ξαω21

4(ξ − ξ−1)(qα − q−α)
((ξ + ξ−1)σ z ⊗ σ z

− (q + q−1)(σ + ⊗ σ− + σ− ⊗ σ +)) − 1

4
(ϕ1σ

z ⊗ I2 + ϕ2I2 ⊗ σ z)

− q − q−1

4(ξ − ξ−1)
(ϕ1 − ϕ2)(σ

+ ⊗ σ− − σ− ⊗ σ +), (57)

where we introduced the abbreviations ωjk = ω(ξj , ξk|κ, α) and ϕj = ϕ(ξj |κ, α).
For the limit α → 0, the properties of the functions ϕ and ω with respect to negating

κ and α are important. They follow from the fact that the R-matrix is invariant under spin
reversal:

R(λ) = (σ x ⊗ σx)R(λ)(σ x ⊗ σx). (58)

Introducing the spin reversal operator J = σx
1 . . . σ x

N we conclude with (58) that

Ta(ζ,−κ) = σx
a JTa(ζ, κ)Jσ x

a . (59)

12



J. Phys. A: Math. Theor. 42 (2009) 315001 H Boos and F Göhmann

It follows that t (ζ,−κ) = J t (ζ, κ)J . Hence,

J |κ〉 = | − κ〉, (60a)

�(ζ, κ) = �(ζ,−κ). (60b)

The latter two equations used in the definition (16) of the α-twisted density matrix imply that

DN(ξ1, . . . , ξm| − κ,−α) = (σ x)⊗mDN(ξ1, . . . , ξm|κ, α)(σ x)⊗m. (61)

From (20), (60b) we obtain the relation

ϕ(ζ | − κ,−α) = −ϕ(ζ |κ, α). (62)

Equation (61) together with (52)–(54) and the expressions for the density matrix elements of
the previous section implies that

ω(ξ1, ξ2|κ, α) = ω(ξ2, ξ1| − κ,−α). (63)

Our next step is to verify that the function ω given by formula (54) satisfies a property
called the ‘normalization condition’ by the authors of [19] (see equation (6.10) there). So we
come back to the case of finite Trotter number N with arbitrary inhomogeneity parameters
βj , j = 1, . . . , N as is written in (5). We shall also use multiplicative parameters τj = eβj .

We consider the normalization condition in the following form:(
ω(ζ, ξ |κ, α) + DζDξ�

−1
ζ ψ(ζ/ξ)

)∣∣
ζ=τj

+ ρ(τj )
(
ω(ζ, ξ |κ, α) + Dζ Dξ�

−1
ζ ψ(ζ/ξ)

)∣∣
ζ=q−1τj

= 0, (64)

j = 1, . . . N , which can be obtained from the integral in (6.10) of [19] by taking the residues
and using the TQ-relation (4.2) of that paper. Also let us recall the definition

Dζg(ζ ) = g(qζ ) + g(q−1ζ ) − 2ρ(ζ )g(ζ ). (65)

Actually, (6.10) of [19] comprises one more equation related to the residue at ζ 2 = 0. This
case needs separate treatment and will be discussed below.

First, we use the following difference equation for the function � defined by (50):

�(ξ1, ξ2) + ρ(ξ1)q
−α�(q−1ξ1, ξ2) = G(ν1, ν2)

1 + ā(ν1, κ)
− ρ(ξ1)q

−α G(ν1 − η, ν2)

1 + a(ν1 − η, κ)

+ ρ(ξ2)cth(ν1 − ν2) − q−αcth(ν1 − ν2 − η)

− q−α(ρ(ξ1)ρ(q−1ξ1) − 1)

∫
C

dm(μ)G(μ, ν2)cth(μ − ν1 + η), (66)

where a = 1/a by definition. This equation is the result of an analytical continuation
defined for �(q−1ξ1, ξ2) through an appropriate deformation of the integration contour in
(50). Some simplifications occur in the limit ν1 → βj or equivalently ξ1 → τj , namely, since
a(βj , κ) = ā(βj − η, κ) = 0 or ā(βj , κ) = a(βj − η, κ) = ∞, the first two terms in the
right-hand side of (66) do not contribute. Then we have

ρ(τj )ρ(q−1τj ) = Q−(q−1τj ; κ + α)Q+(τj ; κ)

Q−(τj ; κ + α)Q+(q−1τj ; κ)
· Q−(τj ; κ + α)Q+(q−1τj ; κ)

Q−(q−1τj ; κ + α)Q+(τj ; κ)
= 1,

with the Q-functions, Q±, defined in [19]. This means that also the last term in the right-hand
side of (66) does not contribute. Hence, we obtain

�(τj , ξ2) + ρ(τj )q
−α�(q−1τj , ξ2) = ρ(ξ2)cth(βj − ν2) − q−αcth(βj − ν2 − η). (67)

Note that the right-hand side is, up to the sign, equal to the driving term in the integral equation
(31) for G.
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If we take formula (54) and use (67) then, after some algebra, we obtain

ω(τj , ξ2|κ, α) + ρ(τj )ω(q−1τj , ξ2|κ, α)

= − (�ζψ(ζ/ξ2))|ζ=τj
− ρ(τj )(�ζψ(ζ/ξ2))|ζ=q−1τj

+ 2(ρ(τj ) + ρ(ξ2))ψ(τj/ξ2) − 2(1 + ρ(τj )ρ(ξ2))ψ(q−1τj /ξ2). (68)

Now we need to check that this equation is equivalent to (64). To this end we should verify
the following equality:(
Dζ Dξ�

−1
ζ ψ(ζ/ξ)

)∣∣
ζ=τj

+ ρ(τj )
(
Dζ Dξ�

−1
ζ ψ(ζ/ξ)

)∣∣
ζ=q−1τj

= (�ζψ(ζ/ξ2))|ζ=τj
+ ρ(τj )(�ζψ(ζ/ξ2))|ζ=q−1τj

−2(ρ(τj ) + ρ(ξ2))ψ(τj /ξ2) + 2(1 + ρ(τj )ρ(ξ2))ψ(q−1τj /ξ2). (69)

Using definition (65), we come after a little algebra to the following expression for an arbitrary
function g(ζ ):

Dζ Dξg(ζ/ξ) = �2
ζ g(ζ/ξ) + 4(1 − ρ(ζ ))(1 − ρ(ξ))g(ζ/ξ)

− 2(ρ(ζ ) + ρ(ξ))(g(qζ/ξ) + g(q−1ζ/ξ) − 2g(ζ/ξ)). (70)

Now take

(DζDξg(ζ/ξ))|ζ=τj
+ ρ(τj )(Dζ Dξg(ζ/ξ))|ζ=q−1τj

= (�2
ζ g(ζ/ξ)

)∣∣
ζ=τj

+
(
�2

ζ g(ζ/ξ)
)∣∣

ζ=q−1τj
− 2(ρ(τj ) + ρ(ξ))(�ζg(ζ/ξ))|ζ=τj

+ 2(1 + ρ(τj )ρ(ξ))(�ζg(ζ/ξ))|ζ=q−1τj
. (71)

If we substitute g(ζ/ξ) = �−1
ζ ψ(ζ/ξ) and take ξ = ξ2, then we immediately arrive at the

equality (69).
As was mentioned above, there is one more case to be considered, corresponding to the

contour �0, i.e. to the residue at ζ 2 = 0 in equation (6.10) of [19] which has to vanish. Its
vanishing follows from

lim
ξ1→0

ξ−α
(
ω(ξ1, ξ2) + Dξ1Dξ2�

−1
ξ1

ψ(ξ)
)

= 2q−κ

qκ + q−κ

[
ρ(ξ2) − q−α + (qα − q−α)

∫
C

dm(μ)G(μ, ν2)

]
= 0. (72)

Here we have used (50), (54), (55), (70) as well as the fact that limν→−∞ ρ(ξ) =
(qα+κ + q−α−κ)/(qκ + q−κ) in the first equation and the identity (34) in the second equation.

The normalization condition just shown to be satisfied by our function ω defined in (52) is
the main ingredient in our proof that ω is, in fact, the same function as introduced in equation
(7.2) of [19]. Let us consider ω as a function of ξ1. As was shown in [19], the function
ρ(ξ1) depends only on ξ 2

1 . The same is then true for �(ξ1, ξ2) from (50). Using (54) we
conclude that ξ−αω(ξ1, ξ2|κ, α) is a function of ξ 2

1 . From its definition (52) and from (16),
(53) we see that ω is rational in ξ 2

1 of the form P
(
ξ 2

1

)/
Q
(
ξ 2

1

)
, where P and Q are polynomials.

Clearly both of them are at most of degree N + 2. The zeros of Q are the N zeros of the
transfer matrix eigenvalue �(ξ1, κ) plus two zeros at q±2ξ 2

2 stemming from the two simple
poles of ξ−αc∗

[1,2](ξ2, α)b∗
[1,2](ξ1, α − 1)(1). Comparing now with the definition (7.2) of [19]

we see that the functions there have precisely the same structure. It is rational of the form
P̃
(
ξ 2

1

)/
Q̃
(
ξ 2

1

)
with two polynomials P̃ , Q̃ at most of degree N + 2. Q and Q̃ have the same

zeros. We may, therefore, assume that they are identical. In order to show that P and P̃

also agree we have to provide N + 3 relations. N + 1 of them are given by the normalization
condition above. Another two come from the residues at the two trivial poles.
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C

ν1
(I)

C

ν1

(II)

C ν1

(III)

C

ν1

(IV)

Figure 2. Four cases to be considered for the analytic continuation of �(ξ1, ξ2) with respect to
ν1. Here C is the canonical contour of figure 1.

Since they are outside the canonical contour, we have to consider again the analytic
continuation of the integral (50) defining � with respect to ξ1. There are four regions
depending on the location of ν1 relative to the contour (see figure 2). Using (50) we obtain

�(ξ1, ξ2) =
∫
C

dm(μ)G(μ, ν2)(q
αcth(μ − ν1 − η) − ρ(ξ1)cth(μ − ν1))

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(ν1, ν2)

1 + a(ν1, κ)
case (I)

0 case (II)

G(ν1, ν2)

1 + a(ν1, κ)
+

qαG(ν1 + η, ν2)

(1 + a(ν1 + η, κ))ρ(qξ1)
case (III)

G(ν1, ν2)

1 + a(ν1, κ)
case (IV).

(73)

Then, e.g., by means of the integral equation (31),

resξ 2
1 =q2ξ 2

2
�(ξ1, ξ2) = − 2ξ 2

2 q2−α

(1 + a(ν2 + η, κ))(1 + a(ν2, κ))
= −2ξ 2

2 q2−αa(ξ2q)d(ξ2)

�(ξ2q, κ)�(ξ2, κ)
, (74a)

resξ 2
1 =q−2ξ 2

2
�(ξ1, ξ2) = 2ξ 2

2 qα−2

(1 + a(ν2, κ))(1 + a(ν2 − η, κ))
= 2ξ 2

2 qα−2a(ξ2)d(ξ2q
−1)

�(ξ2, κ)�(ξ2q−1, κ)
, (74b)

where a and d are the vacuum expectation values of the diagonal elements of T (ζ ). Since the
ratios on the right-hand side are invariant under changing the normalization of the R-matrix, we
can directly compare the residues obtained from (54), (74) with those obtained from equation
(7.2) of [19]. We find agreement, which completes the proof.

What if we consider (54) as the definition of ω? Then, in addition, we have to show
that there are no poles other than the two trivial ones and those at the location of the zeros of
�(ξ1, κ). But this is immediately clear from (73). The integral has only poles at the zeros
of �(ξ1, κ). In case (I), there is one additional pole at ν1 = ν2 + η with residue (74a). The
simple poles of G(ν1, ν2) at λj + η, where the λj are the Bethe roots (see appendix A), are
cancelled by the simple poles of a(ν1, κ) (see equation (A.6a)). In cases (II) and (IV), there is

15



J. Phys. A: Math. Theor. 42 (2009) 315001 H Boos and F Göhmann

nothing to show. In case (III), we have one additional pole at ν1 = ν2 − η with residue (74b).
The simple poles at λj − η have vanishing residue due to (A.6a) and since

resν1=λj −ηG(ν1, ν2) = −qαG(λj , ν2)

ρ(ζj )a′(λj )
. (75)

7. The exponential form: preliminary remarks

The main result of [19] is formula (1.12). It makes the calculation of arbitrary correlation
functions possible, because the operators t∗, b∗, c∗ generate a basis of the space of quasi-local
operators [5]. Although this formula proves the factorization of the correlation functions and
allows, in principle, also for their direct numerical evaluation, it may be sometimes preferable
to avoid the creation operators and to have an explicit formula for the correlation functions
in the standard basis generated by the local operators ej

ε′
ε

. We believe that some form of the
exponential formula discussed in the previous papers [2–4, 9] must be valid in the case of
temperature, disorder and magnetic fields as well. Unfortunately, the problem of constructing
all operators that appear in this formula remains still open. We hope to come back to it in
a future publication. Here we formulate the general properties we expect for these operators
and show by examples how they should look like for short distances.

From now on we shall use the notation and the terminology of the paper [9]. In particular,
we shall be dealing with the spaceW (α) of quasi-local operators of the form q2αS(0)O introduced
there. First we define a density operator, D∗

N : W (α) → C, which generalizes that one defined
by formulae (33), (34) of [4], namely, for any quasi-local operator O we define

D∗
N(O) = 〈O〉T ,α,κ (76)

in such a way that

D∗
N

(
e1

ε1

ε′
1
. . . em

εm

ε′
m

) = DN
ε′

1...ε
′
m

ε1...εm
(ξ1, . . . , ξm|κ, α), (77)

where DN is the density matrix defined in (16).
We expect that as before

D∗
N(O) = trα{exp(�)(q2αS(0)O)}, (78)

where trα is the α-trace defined in [9] and where the operator � consists of two terms like that
one constructed in [4]:

� = �1 + �2. (79)

In fact, the first term follows from [9, 19]. It must be of the form

�1 =
∫

dζ 2
1

2π iζ 2
1

∫
dζ 2

2

2π iζ 2
2

(ω0(ζ1/ζ2|α) − ω(ζ1, ζ2|κ, α))b(ζ1)c(ζ2), (80)

where the function ω0 was defined in [9]:

ω0(ζ |α) = −
(

1 − qα

1 + qα

)2

�ζψ(ζ ). (81)

The second part in the right-hand side of (79) should be of the form

�2 =
∫

dζ 2

2π iζ 2
log(ρ(ζ ))t(ζ ), (82)

where the operator t is yet to be determined. In some sense it must be the conjugate of the
operator t∗. The integration contour for both, �1 and �2, is taken around all simple poles
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ζ1, ζ2, ζ = ξj with j = 1, . . . , m in the anti-clockwise direction. The number m is the length
of locality of the operator O.

Let us list some of the most important expected properties of the operator t. First, we
expect that like t∗(ζ ) the operator t(ζ ) is block diagonal:

t(ζ ) : Wα,s → Wα,s,

where, as was explained in [9], Wα,s ⊂ W (α) is the space of quasi-local operators of spin s.
We will deal below mostly with the sector s = 0.

Then we expect t(ζ ) to have simple poles at ζ = ξj . Let us define

tj = resζ=ξj t(ζ )
dζ 2

ζ 2
(83)

while

t∗j = t∗(ξj ). (84)

In contrast to (83) the operator t∗j is well defined only if it acts on the states X[k,l] with l < j .
This will be always implied below. Let us denote t[k,l](ζ ) and respectively tj [k,l] the operators
defined on the interval [k, l] with k � j � l.

We also expect that R-matrix symmetry holds similar to formula (2.16) of [9] for t∗:

sit[k,l](ζ ) = t[k,l](ζ )si for k � i < l. (85)

Here as was defined in [9],

si = Ki,i+1Ři,i+1(ξi/ξi+1), (86a)

Ři,i+1(ξi/ξi+1)(X) = Ři,i+1(ξi/ξi+1)XŘi,i+1(ξi/ξi+1)
−1, (86b)

Ři,i+1(ζ ) = Pi,i+1Ri,i+1(ζ ), (86c)

where Ki,j stands for the transposition of arguments ξi and ξj , and Pi,j ∈ End(Vi ⊗ Vj ) is the
transposition matrix.

The further properties are:

• Commutation relations:

[tj , tk]− = [tj , b(ζ1)c(ζ2)]− = 0. (87)

• Projector property:

t2
j = tj . (88)

• Relations with t∗:

tj t∗k = t∗j tk for j �= k,

tj t∗j = t∗j , t∗j tj = 0. (89)

• Reduction properties:

t1[1,l](q
ασz

1 X[2,l]) = qασz
1 X[2,l], (90a)

tj [1,l](q
ασz

1 X[2,l]) = qασz
1 tj [2,l](X[2,l]) for 1 < j � l, (90b)

tj [1,l](X[1,l−1]) = tj [1,l−1](X[1,l−1]) for 1 � j < l, (90c)

tl[1,l](X[1,l−1]) = 0. (90d)

17



J. Phys. A: Math. Theor. 42 (2009) 315001 H Boos and F Göhmann

Let us comment on these relations. First of all the commutation relations (87) lead to the
factorization of the exponential:

exp(�) = exp(�1 + �2) = exp(�1) exp(�2). (91)

As we know (see [3, 4, 9] and earlier references therein) the operator �1 becomes nilpotent
when it acts on states of finite length. By way of contrast, the operator �2 is not nilpotent, but
due to (87) and the projector property (88) one can conclude that

exp(�2)(q
2αS(0)X[1,l]) =

l∏
j=1

(1 − tj [1,l] + ρj tj [1,l])(X[1,l])q
2αS(0), (92)

where ρj = ρ(ξj ). The reduction properties (90) look standard except for the first one. It is
easy to see that we need all of them in order to have the reduction property (19b) of the density
matrix, but still we do not have a good understanding of (90a).

Let us show how tj for s = 0 explicitly look like in two particular cases, namely, for
m = 1 and m = 2 where m = l − k + 1 and without loss of generality k = 1:
m = 1:

t1[1,1] = qασz
1 ⊗ σ z

1

qα − q−α
, (93)

m = 2:

t1[1,2] = 1

4

qα + q−a

qα − q−a
I ⊗

[
σ z

1 − q − q−1

ξ1/ξ2 − ξ2/ξ1
· (σ +

1 σ−
2 − σ−

1 σ +
2

)]
+

1

4
σ z

1 ⊗
[
σ z

1 − q − q−1

ξ1/ξ2 − ξ2/ξ1
· (σ +

1 σ−
2 − σ−

1 σ +
2

)]
+

1

4
qασz

1 σ z
2 ⊗

[(
qσz

1

qα+1 − q−α−1
+

q−σ z
1

qα−1 − q−α+1

)
σ z

1 σ z
2

− (q − q−1)(qα + q−α)

2(qα+1 + q−α−1)(qα−1 + q−α+1)
(ξ1/ξ2 − ξ2/ξ1) · (σ +

1 σ−
2 − σ−

1 σ +
2

)
− (q + q−1)(qα − q−α)

2(qα+1 + q−α−1)(qα−1 + q−α+1)
(ξ1/ξ2 + ξ2/ξ1) · (σ +

1 σ−
2 + σ−

1 σ +
2

)]
. (94)

The operator t2[1,2] can be obtained from t1[1,2] using the R-matrix symmetry (85),

t2[1,2] = s1t1[1,2]s−1
1 . (95)

One can check that all the above properties are fulfilled.
It is interesting to understand how the limit α → 0 works, because, as one can see from

(93)–(95), the operators t1 and t2 are singular in this limit. More precisely, only the very first
term in expression (94) for t1[1,2] is singular. In fact, they contribute into the density matrix
only in such a combination that this singularity cancels. So, we actually need to calculate the
residue with respect to α. In appendix B we will discuss this issue in more detail. We will
also show how these operators are related to the ‘fermionic’ operators hj constructed in [2, 4].

8. Conclusions

The main result of this work is the description of the function ω in terms of integrals involving
the auxiliary function a and the function G, which are solutions of integral equations. As we
have experienced in our previous work, such type of description is efficient for performing
the Trotter limit and for the actual numerical evaluation of correlation functions. We know
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from [19] that no other functions than ω and ρ are required. Thus, together with [19], we
have achieved a rather complete understanding of the mathematical structure of the static
correlation functions of the XXZ chain. Our results are equally valid in the finite temperature
as in the finite length case, the only difference being a different driving term in the nonlinear
integral equation for the auxiliary functions a.

We expect that our results open a way for further concrete studies of short-range correlation
functions at finite temperature as initiated in [2–4]. We hope that in the future it will also prove
useful in studying field theoretical scaling limits as well as the large distance asymptotics of
correlation functions in the XXZ chain.

We have obtained our expression for ω through a novel multiple integral representation
of the density matrix of the XXZ chain including a disorder parameter α. We think that this
multiple integral representation is also interesting on its own right.

We would like to point out that we obtained a remarkably beautiful and simple
characterization of the function � on the inhomogeneous finite lattice through equation (67)
and the residua (74). The function � is important because it becomes the transcendental part
of ω in the Trotter limit.

We further performed a case study, looking for an operator t, adjoint to t∗ that allows us
to write the density matrix in an exponential form even in the presence of a disorder parameter
and a finite magnetic field. We obtained explicit expressions for t for m = 1, 2, but so far
could not find a general construction behind it. We hope to come back to this latter point in
the future.
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Appendix A. Derivation of the multiple integral representation

A multiple integral representation for the density matrix in the non-twisted case α = 0 was
derived in [13]. Here we shall only indicate which modifications are necessary to include
non-zero α and otherwise refer the reader to that work.

First note that

〈κ + α|T ε′
1

ε1 (ξ1, κ) · · · T ε′
m

εm
(ξm, κ)|κ〉

〈κ + α|∏m
j=1 t (ξj , κ)|κ〉 =

〈κ|T εm

ε′
m

(ξm, κ) · · · T ε1

ε′
1
(ξ1, κ)|κ + α〉

〈κ|∏m
j=1 t (ξj , κ)|κ + α〉 , (A.1)

because of the symmetry of the R-matrix with respect to transposition. We may, therefore,
start our calculation with

〈κ|T α1
β1

(ξ1, κ) · · · T αm

βm
(ξm, κ)|κ + α〉

〈κ|∏m
j=1 t (ξj , κ)|κ + α〉 , (A.2)

which brings us closer to the notation of [13].
The left and right eigenvectors 〈κ| and |κ +α〉 can be constructed by means of the algebraic

Bethe ansatz. They are parameterized by two sets, {λ} = {λj }N/2
j=1 and {μ} = {μj }N/2

j=1, of Bethe
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roots, which are special solutions to the Bethe ansatz equations:

q−2κd(λj )

a(λj )

N/2∏
k=1

sh(λj − λk + η)

sh(λj − λk − η)
= −1,

q−2κ − 2αd(μj )

a(μj )

N/2∏
k=1

sh(μj − μk + η)

sh(μj − μk − η)
= −1 (A.3)

for j = 1, . . . , N/2. By a(λ) and d(λ) we denoted here the vacuum expectation values of the
diagonal elements of T (ζ ). For its κ-twisted version, we shall reserve the notation,

T (ζ |κ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
, (A.4)

for the matrix elements. Then the eigenvectors 〈κ| and |κ + α〉 are

〈κ| = 〈{λ}| = 〈0|C(λ1) . . . C(λN/2), (A.5a)

|κ + α〉 = |{μ}〉 = B(μ1) . . . B(μN/2)|0〉, (A.5b)

where 〈0| and |0〉 are the left and right pseudo-vacuum states.
With the solutions {λ} and {μ} of the Bethe ansatz equations we associate the auxiliary

functions,

a(λ) = a(λ, κ) = q−2κd(λ)

a(λ)

N/2∏
k=1

sh(λ − λk + η)

sh(λ − λk − η)
, (A.6a)

aα(λ) = a(λ, κ + α) = q−2κ−2αd(λ)

a(λ)

N/2∏
k=1

sh(λ − μk + η)

sh(λ − μk − η)
, (A.6b)

and the ratio of q-functions

φ(λ) =
N/2∏
j=1

sh(λ − μj)

sh(λ − λj )
. (A.7)

Then 〈{λ}| is the ‘dominant’ left eigenvector of t (ζ, κ) with the eigenvalue

�(ζ, κ) = qκa(λ)

⎡⎣N/2∏
j=1

sh(λ − λj − η)

sh(λ − λj )

⎤⎦ (1 + a(λ)), (A.8)

and similarly |{μ}〉 is the dominant right eigenvector of the α-twisted transfer matrix t (ζ, κ +α)

with the eigenvalue

�(ζ, κ + α) = qκ+αa(λ)

⎡⎣N/2∏
j=1

sh(λ − μj − η)

sh(λ − μj)

⎤⎦ (1 + aα(λ)). (A.9)

Dividing (A.9) by (A.8) we obtain the identities,

ρ(ζ ) = 1 + aα(λ)

1 + a(λ)
qαφ(λ − η)φ−1(λ) = 1 + aα(λ)

1 + a(λ)
q−αφ(λ + η)φ−1(λ), (A.10)

which will be needed below. Here we have introduced the notation a = 1/a and aα = 1/aα .
In the derivation of the multiple integral formula below we shall use that ρ is analytic and
non-zero inside the canonical contour C which follows from the Bethe equations and from the
explicit form of the vacuum expectation values a and d.

The derivation of the density matrix for α = 0 in [13] is divided into two steps. Step 1
is the derivation of the ‘general left action’ 〈{λ}|T α1

β1
(ξ1, κ) · · · T αm

βm
(ξm, κ) of a string of
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monodromy matrix elements on the left dominant eigenvector. This step remains the same
as before. The general left action is given by lemma 1 of [13]. In a second step one must
calculate ratios of scalar products of the form

χ = 〈{ν+} ∪ {λ−}|{μ}〉
〈{λ}|{μ}〉∏m

j=1 �(ξj , κ)
(A.11)

which are generated in step 1. A useful expression for these ratios in the untwisted case,
α = 0, is provided by lemma 2 of [13]. This needs to be modified here.

The notation in (A.11) is meant as follows. We divide the sets {λ} and {ν} =
{νj }mj=1 = {ln ξj }mj=1 into disjoint subsets {λ+}, {λ−} and {ν+}, {ν−}, such that their unions
are {λ+} ∪ {λ−} = {λ} and {ν+} ∪ {ν−} = {ν}. The number of elements in a set {x} will be
denoted |x|. We shall assume that |λ+| = |ν+| = n. For a given partition of {λ} into {λ+}, {λ−}
we order the λs such that

(λ1, . . . , λN/2) = (λ+
1, . . . , λ

+
n, λ

−
1 , . . . , λ−

N/2−n

)
(A.12)

and we define

(λ̃1, . . . , λ̃N/2) = (ν+
1 , . . . , ν+

n , λ−
1 , . . . , λ−

N/2−n

)
. (A.13)

Then using lemma 2 of [14] (with the roles of λ and μ interchanged) we arrive after some
trivial cancellations at

χ =
⎡⎣|ν−|∏

j=1

∏N/2
k=1 b(λk − ν−

j )

a(ν−
j )(1 + a(ν−

j ))

⎤⎦⎡⎣ |λ+|∏
j=1

∏N/2
k=1,λk �=λ+

j
b
(
λk − λ+

j

)
a
(
λ+

j

)(
1 + a

(
ν+

j

))
⎤⎦ det−1

|λ+|

[
c
(
λ+

j − ν+
k

)
b
(
λ+

j − ν+
k

)]

× detN/2 N̂(μj , λ̃k)

detN/2 N̂(μj , λk)

⎡⎣ |λ+|∏
j=1

φ
(
ν+

j − η
)
φ−1
(
λ+

j − η
)⎤⎦

︸ ︷︷ ︸
= �

, (A.14)

where

N̂(μj , λk) = e(μj − λk) − e(λk − μj)aα(λk). (A.15)

In the following, we concentrate on the term � in the second line of (A.14). We want
to transform it into a form that allows us to perform the Trotter limit N → ∞. We define
column vectors uk, k = 1, . . . , |ν+| = n, and vk, k = 1, . . . , N/2, by

(uk)
j = φ

(
ν+

k − η
)
N̂
(
μj , ν

+
k

) = φ
(
ν+

k − η
)(

e
(
μj − ν+

k

)− e
(
ν+

k − μj

)
aα

(
ν+

k

))
,

(A.16)
(vk)

j = φ(λk − η)N̂(μj , λk) = e(μj − λk)φ(λk − η) + q−2α e(λk − μj)φ(λk + η).

In (A.16) we used the Bethe ansatz equations (A.3) to eliminate q−2κd(λk)/a(λk). We have

� = det(u1, . . . , un, vn+1, . . . , vN/2)

det(v1, . . . , vN/2)
. (A.17)

Next we use a trick we learned from N Kitanine [20] and which in a similar form originally
appeared in [16]. Define a matrix X with matrix elements

X
j

l = qαcth(μl − λj )resλ=μlφ
−1(λ) (A.18)

and column vectors Uk = U
(
ν+

k

) = Xuk , and Vk = Xvk . Then

� = det(U1, . . . , Un, Vn+1, . . . , VN/2)

det(V1, . . . , VN/2)
. (A.19)
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The vectors Uk and Vk are easily calculated by means of the residue theorem. Choose two
simple closed contours Cλ and Cμ such that all Bethe roots λj are inside Cλ but outside Cμ, and
all Bethe roots μj are inside Cμ but outside Cλ. Then

(Vk)
j =

N/2∑
l=1

qαcth(μl − λj )resλ=μlφ
− 1(λ)[e(μl − λk)φ(λk − η) + q−2α e(λk −μl)φ(λk + η)]

=
∫
Cμ

dμ

2π i
cth(μ − λj )φ

−1(μ)[qα e(μ − λk)φ(λk − η) + q−α e(λk − μ)φ(λk + η)]︸ ︷︷ ︸
= f (μ)

.

(A.20)

The function f is periodic with period iπ , and limReμ→±∞ f (μ) = 0. Moreover, φ−1(μ) is
analytic inside Cλ. Hence, for j �= k,

(Vk)
j = −

∫
Cλ

dμ

2π i
f (μ) = −(resμ=λj + resμ=λk + resμ=λk+η + resμ=λk−η)f(μ)

= q−αcth(λj − λk − η) − qαcth(λj − λk + η) = Kα(λj − λk). (A.21)

For j = k we have a non-trivial residue from the second-order pole at λj , and

(Vj )
j = (q−αφ(λj + η) − qαφ(λj − η))∂μφ−1(μ)|μ=λj

+ Kα(0). (A.22)

Similarly, we obtain

(Uk)
j = qαcth

(
λj − ν+

k

)
φ−1
(
ν+

k

)
φ
(
ν+

k − η
)[

1 + aα

(
ν+

k

)]− qαcth
(
λj − ν+

k + η
)

− qαcth
(
λj − ν+

k − η
)
φ−1
(
ν+

k + η
)
φ
(
ν+

k − η
)
aα

(
ν+

k

)
. (A.23)

Following once more [20], we eliminate the function φ from (A.22) and (A.23). This can
be done by means of the identities (A.10). For the first term on the right-hand side of (A.22)
we obtain

(q−αφ(λj + η) − qαφ(λj − η))∂μφ−1(μ)
∣∣
μ=λj

= lim
λ→λj

(q−αφ(λ + η) − qαφ(λ − η))
a′(λ)φ−1(λ)

1 + a(λ)

= lim
λ→λj

a′(λ)ρ(ζ )

[
a(λ)

1 + aα(λ)
− 1

1 + aα(λ)

]
= −a′(λj )ρ(ζj ), (A.24)

where we used (A.10) in the second equation and the Bethe ansatz equation a(λj ) = −1 in
the third equation. It follows that

(Vk)
j = −δ

j

k a
′(λj )ρ(ζj ) + Kα(λj − λk). (A.25)

Eliminating φ from (A.23) by means of (A.10) we end up with

(Uk)
j = cth

(
λj − ν+

k

)(
1 + a

(
ν+

k

))
ρ
(
ξ+
k

)− qαcth
(
λj − ν+

k + η
)− q−αcth

(
λj − ν+

k − η
)
a
(
ν+

k

)
.

(A.26)

From here on we can proceed as in [14]. Define a matrix V = (V1, . . . , VN/2) and a
vector W(ν) = V −1U(ν). Then

� = detN/2(V
−1U1, . . . , V

−1Un, en+1, . . . , eN/2) = detn(〈ej , V
−1Uk〉) = detn

(
W
(
ν+

k

)j )
.

(A.27)
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W(ν+
k ) is the solution of the linear equation V W

(
ν+

k

) = U
(
ν+

k

)
, or, explicitly,

cth
(
λj − ν+

k

)(
1 + a

(
ν+

k

))
ρ
(
ξ+
k

)− qαcth
(
λj − ν+

k + η
)− q−αcth

(
λj − ν+

k − η
)
a
(
ν+

k

)
= − W

(
ν+

k

)j
a′(λj )ρ(ζj ) +

N/2∑
l=1

Kα(λj − λl)W
(
ν+

k

)l
. (A.28)

This can be transformed into a linear integral equation. For this purpose define

G(λ, ν) = qαcth(λ − ν + η)

1 + a(ν)
+

q−αcth(λ − ν − η)

1 + a(ν)
− cth(λ − ν)ρ(ξ)

+
N/2∑
l=1

Kα(λ − λl)W(ν)l

1 + a(ν)
. (A.29)

This function is defined such that

G(λj , ν
+
k ) = ρ(ζj )a

′(λj )W
(
ν+

k

)j
1 + a

(
ν+

k

) . (A.30)

We shall assume that ν is located inside the canonical contour C shown in figure 1. By
construction, G(λ, ν) is then meromorphic inside C and has a single simple pole with residue
−ρ(ξ) at λ = ν. Using (A.30) it follows that

G
(
λ, ν+

k

) = q−αcth
(
λ − ν+

k − η
)− cth

(
λ − ν+

k

)
ρ
(
ξ+
k

)
+
∫
C

dμ

2π i

G
(
μ, ν+

k

)
Kα(λ − μ)

ρ(eμ)(1 + a(μ))
,

(A.31)

which is a linear integral equation for G.
Combining (A.27) and (A.30) we infer that

� =
⎡⎣ |λ+|∏

j=1

1 + a
(
ν+

j

)
a′(λ+

j

)
ρ
(
ζ +
j

)
⎤⎦ det|λ+|

(
G
(
λ+

j , ν
+
k

))
. (A.32)

Inserting this into (A.14) we arrive at

χ =
[|ν−|∏

j=1

∏N/2
k=1 b(λk − ν−

j )

a(ν−
j )(1 + a(ν−

j )
)][ |λ+|∏

j=1

∏N/2
k=1,λk �=λ+

j
b
(
λk − λ+

j

)
a
(
λ+

j

)
a′(λ+

j

)
ρ
(
ζ +
j

) ]
det|λ+|

(
G
(
λ+

j , ν
+
k

))
det|λ+|

[
c

(
λ+

j −ν+
k

)
b

(
λ+

j −ν+
k

)] . (A.33)

This replaces the expression in lemma 2 of [13]. Comparing the two expressions we see
only one explicit difference which is the appearance of the additional factor ρ

(
ζ +
j

)
in the

denominator. It always comes with a factor a′(λ+
j

)
. Therefore, it is easy to trace the

modification required in the derivation of the multiple integral formula in [13]. There is,
however, also an implicit change in the formula. The residue of G(λ, ν) at λ = ν is −ρ(ξ)

instead of −1. This causes another tiny modification in the derivation of the multiple integral
formula. In the first equation (65) of [13] additional m − |λ+| factors of ρ−1 appear which
together with the |λ+| explicit factors give exactly one factor per integral. The final result for
the density matrix is

〈κ|T α1
β1

(ξ1, κ) · · · T αm

βm
(ξm, κ)|κ + α〉

〈κ|∏m
j=1 t (ξj , κ)|κ + α〉

=
⎡⎣|α+|∏

j=1

∫
C

dμj

2π i

Fj (μj )

ρ(eμj )(1 + a(μj ))

⎤⎦⎡⎣ m∏
j=|α+|+1

∫
C

dμj

2π i

F j (μj )

ρ(eμj )(1 + a(μj ))

⎤⎦
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× det[−G(μj , νk)]∏
1�j<k�m

sh(μj − μk − η)sh(νk − νj )
, (A.34)

where we have used the notation of [13], i.e.

Fj (λ) =
xj −1∏
k=1

sh(λ − νk − η)

m∏
k=xj +1

sh(λ − νk), j = 1, . . . , |α+|, (A.35a)

F j (λ) =
xj −1∏
k=1

sh(λ − νk + η)

m∏
k=xj +1

sh(λ − νk), j = |α+| + 1, . . . , m, (A.35b)

and for j = 1, . . . , |α+| we define xj to be the position of the (|α+| − j + 1) th ‘+’ in the
sequence of upper indices (αj )

m
j=1 while for j = |α+| + 1, . . . , m it means the position of the

(j − |α+|) th ‘−’ in the sequence of lower indices (βj )
m
j=1.

Finally, we replace ξk by ξm−k+1 and define εk = αm−k+1, ε
′
k = βm−k+1 for k = 1, . . . , m.

We denote the position of the j th ‘+’ in (εj )
m
j=1 by ε+

j , the position of the j th ‘−’ in (ε′
j )

m
j=1

by ε−
j . Then

xj =
{

m − ε+
j + 1 j = 1, . . . , p

m − ε−
m−j+1 + 1 j = p + 1, . . . , m,

(A.36)

where p = |α+|. Defining

�j =
{

ε+
j j = 1, . . . , p

ε−
m−j+1 j = p + 1, . . . , m,

(A.37)

we obtain xj = m − �j + 1, j = 1, . . . , m. Finally, setting F +
�j

(μ) = Fj (μ) and

F−
�j

(μ) = F j (μ) and using (A.1), we arrive at (29).

Appendix B. Relation with previous results

In our previous work [2, 4], before we knew the multiple integral representation for finite α, we
conjectured formulae which we claimed to hold in the limit α → 0, relevant for the physical
correlation functions of the XXZ chain. We introduced a function, say, ωold(μ1, μ2;α) defined
by an integral formula involving, among other functions, a function Gold which is different
from G defined in (31). Here we explain why our previous results remain unaltered in the
limit α → 0 if we replace ωold(μ1, μ2;α) with −ω(ξ1, ξ2|κ, α) + ω0(ξ |α) (the minus sign is
due to a change of conventions in which we followed [9, 19]).

Our previous ad hoc definitions were

ωold(ν1, ν2;α) − ω0(ξ |α) = −ξα�old(ν2, ν1;−α) + �ψ(ξ),
(B.1)

�old(ν2, ν1;−α) = 2
∫
C

dm0(μ)Gold(μ, ν2;−α)(qαcth(μ − ν1 − η) − cth(μ − ν1)),

where dm0(μ) = dm(μ)|α=0 and where Gold was the solution of the linear integral equation,

Gold(λ, ν;−α) = q−αcth(λ − ν − η) − cth(λ − ν) +
∫
C

dm0(μ)Kα(λ − μ)G(μ, ν;−α).

(B.2)
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Comparing with (52), (50) and (31) we see that apart from some conventional sign changes
the only difference is that the function ρ is replaced by unity in the old definitions. Using that
ω0(ξ |0) = 0, we conclude, in particular, that

ω(ξ1, ξ2|κ, 0) = −ωold(ν1, ν2; 0) (B.3)

and that G(λ, ν)|α=0 = Gold(λ, ν; 0) = G0(λ, ν) which satisfies the integral equation

G0(λ, ν) = e(ν − λ) +
∫
C

dm0(μ)K(λ − μ)G0(μ, ν). (B.4)

This integral equation implies the symmetry

ω(ξ1, ξ2|κ, 0) = ω(ξ2, ξ1|κ, 0). (B.5)

Let us define

ω′(ξ1, ξ2) = ∂α(ξ−αω(ξ1, ξ2|κ, α))|α=0, (B.6a)

ω′
old(ν1, ν2) = ∂α(ξ−αωold(ν1, ν2;α))|α=0. (B.6b)

We shall show below that

ω′
old(ν1, ν2) = 1

2
(ω′(ξ2, ξ1) − ω′(ξ1, ξ2)). (B.7)

Accepting this for a moment let us insert −ω + ω0 instead of ωold into our previous formula
for the exponential form, e.g. into equation (35) of [2], which actually means to use (80) for
the t independent part of the exponential form. Then using (B.3), (B.5) and (B.7) and the fact
that ξ−αω0(ξ |α) = O(α2) we recover our previous result, namely equation (37) of [2], in the
limit α → 0.

It remains to prove (B.7). For this purpose consider
1

2
(ω′

old(ν1, ν2) + ω′(ξ1, ξ2)) = (ρ ′(ξ1) − ρ ′(ξ2))ψ(ξ)

− ρ ′(ξ1)

∫
C

dm0(μ)G0(μ, ν2)cth(μ − ν1)

−
∫
C

dm0(μ)ρ ′(eμ)G0(μ, ν2) e(ν1 − μ)

+
∫
C

dm0(μ)G′(μ, ν2) e(ν1 − μ), (B.8)

where ρ ′(ξ) = ∂αρ(ξ)|α=0, and G′(μ, ν2) = ∂α(G(μ, ν2) + Gold(λ, ν;α))|α=0. Taking the
α-derivative of (31) and (B.2) we find

G′(λ, ν2) = −ρ ′(ξ2)cth(λ − ν2) −
∫
C

dm0(μ)ρ ′(eμ)G0(μ, ν2)K(λ − μ)

−
∫
C

dm0(μ)K(λ − μ)G′(μ, ν2). (B.9)

Using (B.4) and (B.9) we can eliminate G′ from (B.8) by means of the ‘dressed function trick’.
We arrive at
1

2
(ω′

old(ν1, ν2) + ω′(ξ1, ξ2)) = (ρ ′(ξ1) − ρ ′(ξ2))ψ(ξ)

− ρ ′(ξ1)

∫
C

dm0(μ)G0(μ, ν2)cth(μ − ν1)

− ρ ′(ξ2)

∫
C

dm0(μ)G0(μ, ν1)cth(μ − ν2)

−
∫
C

dm0(μ)ρ ′(eμ)G0(μ, ν1)G0(μ, ν2) (B.10)
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which is obviously symmetric. Then (B.7) follows if one takes into account that ω′
old(ξ1, ξ2)

is antisymmetric, which was shown in [4].
Now let us discuss how the operators tj described in section 7 are related to the operators

hj (see formulae (40)–(42) of [2]) in the limit α → 0. As we mentioned above, the
operators tj have a pole of first order when α → 0. On the other hand, it follows from
formula (92) that the density matrix depends only on the combination (ρj − 1)tj . Since
limα→0 ρj = 1, 1 − ρj = O(α), and one obtains for (ρj − 1)tj a finite result in the limit
α → 0. So we actually need only the residues of tj . Let us define

t(0)
j = lim

α→0
(1 − qα)tj . (B.11)

Since for the moment we do not have an explicit formula for tj in the general case, let us
describe the relation with hj again only for the cases m = 1, 2 where we know the explicit
result (93) and (94), (95). It is enough to consider j = 1.

For m = 1,

t(0)
1[1,1] = −h1[1,1] = − 1

2I ⊗ σ z
1 . (B.12)

For m = 2, we simply get from (94)

t(0)
1[1,2] = −1

4
I ⊗

[
σ z

1 − q − q−1

ξ1/ξ2 − ξ2/ξ1
· (σ +

1 σ−
2 − σ−

1 σ +
2 )

]
(B.13)

and

t(0)
1[1,2] + h1[1,2] = −1

4

ξ1/ξ2 + ξ2/ξ1

ξ1/ξ2 − ξ2/ξ1
σ z

2 ⊗
[
σ z

1 σ z
2 − q + q−1

ξ1/ξ2 + ξ2/ξ1
· (σ +

1 σ−
2 + σ−

1 σ +
2

)]
.

(B.14)

It is interesting to note the following. In spite of the fact that the operators hj are fermionic
and tj are bosonic, the limit of the α-trace of the corresponding exponentials should coincide:

lim
α→0

trα

⎧⎨⎩exp

⎛⎝∑
j

log ρj tj

⎞⎠− exp

⎛⎝−
∑

j

ϕj hj

⎞⎠⎫⎬⎭ (q2αS(0)O) = 0, (B.15)

where ϕj = ϕ(ξj |κ, 0). We do not have a complete understanding of this relation for the
moment, but we can follow how it works for m = 1, 2. The case, m = 1, is trivial while
the case, m = 2, is more interesting. For instance, one could expect that terms containing
ϕ1ϕ2 appear, but they do not. For the fermionic formula this is a simple consequence of
the anti-commutation relations of the operators hj . The reason why do they not appear for
the bosonic formula is different, namely, because of the relation t(0)

1 t(0)
2 = 0, which can be

checked. We plan to study this point more carefully in the future.
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